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Abstract 

Application of machine learning algorithms to information of magnetic resonance imaging 

 (AD) patients and healthy 

controls (HC). Since a variety of brain representations are used by different studies, it is 

necessary that the influence of the chosen brain atlas on the model performance is 

investigated. Therefore, the goal is to analyse the effect which is caused by varying granularity 

of an atlas. In addition, to find acceptance in the medical community, the model must be able 

to identify biologically relevant regions. Thereby, it can be ensured that the model will reliably 

identify patients in future applications and is not based on sample-specific characteristics. For 

this reason, the regions selected for classification by support vector machine (SVM) to 

differentiate AD vs HC are analysed. Lastly, features that are not selected by a given model are 

generally disregarded. Since those features could potentially still contain relevant information, 

they are examined in this study. Different granularities of the Schaefer atlas, with parcellations 

ranging from 173 to 1273 parcels, were used to extract features from structural images of AD 

patients and healthy controls. Subsequently, SVM classifiers were trained on the features 

derived from the different parcellations and their influence was evaluated based on the 

performance of the resulting model. Biological relevance of the selected features was verified 

by confirming their role in AD with current literature. Non-selected features were singled out 

and used to train a non-selected feature model (NFM). Relevance of the non-selected features 

was evaluated based on performance of the NFM. Evaluation of the obtained accuracies 

showed that the granularity of the atlas affects the model performance on 1.5 Tesla images 

of AD patients and HC. Accuracies ranged from 87% for the 173 parcel parcellation, to 83% for 

the 1273 parcel parcellation.  Classification of 3 Tesla images was not significantly affected, 

with all models achieving accuracies around 91%. Biological relevance of the selected features 

could be confirmed by literature, although it was evident that not all relevant regions were 

included in the model. Examination of the NFM revealed that a model based on non-selected 

features could still classify AD vs HC with an accuracy of 76%.  The findings suggest that future 

atlas-based approaches should pay more attention to the effect of the selected atlas. In 

addition, the ability of SVM to select biologically relevant regions supports its implementation 

for diagnosis of AD in the clinic. Lastly, the results indicate that investigation of non-selected 

features could provide additional insight into the relevance of certain regions for the studied 

disease. 



Introduction 

 

 disease 

Alzheimer´s disease is the most common form of dementia and affects around 30 million 

people worldwide 1. The World Health Organization lists Alzheimer and other dementias as 

the third leading cause of death in high income countries 2. Symptoms of the disease vary 

among patients, but the initial symptom is usually impaired memory3. As the disease 

progresses, individuals often show difficulties with speech, attention and judgement3. The 

pace at which cognitive abilities decline differs, but the average life expectancy from the time 

point of diagnosis is 3 to 10 years 4. Currently, no 

treatment or prevention is known. The underlying mechanisms are poorly understood, but 

with progression of the disease, brain volume is lost continuously. Therefore researchers 

agree, that intervention at the earliest possible stage is crucial to successfully help patients. 

Since it is known, that changes in the brain occur years before first clinical symptoms manifest, 

o  

Therefore, a lot of research has focused on developing biomarkers which can categorize mild 

cognitive impairment (MCI) patients into converters and non-converters. MCI is defined as a 

decline in cognitive abilities, which exceeds the expected decline for a

obstruct the individuals daily life5. MCI is widely accepted as an early 

stage of dementia, especially of AD. Nevertheless, not all MCI patients progress to dementia. 

The annual conversion rate is estimated to be around 7%, emphasizing the need for 

biomarkers which differentiate converters from non-converters6.  

Structural MRI as biomarker for  

constant endeavour to find a biomarker which can reliably track, or better, predict the onset 

of AD. Currently, structural images are investigated for their usefulness as a biomarker for AD. 

The structure of the brain is subject to alterations throughout the disease7,8. Structural images 

represent a non-invasive opportunity to track those alterations. The degree of brain atrophy 

shows a strong correlation with the severity of symptoms and gives insights into the 

progression from normal cognition to  dementia9. More so, serial imaging studies have shown, 



that increased atrophy rates in cognitively normal subjects are a strong indicator for the 

development of AD10. This makes structural images a suitable candidate for early prediction 

of AD onset. Although there exist other biomarkers, like CSF-tau, which can detect the disease 

even sooner, the use of structural MRIs has one major advantage: Atrophy measured by 

structural MRI remains highly correlated with cognitive decline, even in later stages of disease 

progression11. In contrast, CSF-tau levels stay relatively stable during the later stages of the 

disease and are therefore not suited for tracking AD in more progressed states12. Atrophy 

rates are also useful to investigate the transition from the prodromal stage of AD, mild 

cognitive impairment, to dementia. Several studies showed that structural MRI, especially 

when combined with other markers, is well suited to predict conversion from MCI to AD13,14. 

Support Vector Machine  

To analyse the enormous amount of data provided by structural images, learning algorithms 

are used. In this study, Support Vector Machine (SVM) was implemented to classify AD vs 

healthy controls. SVM was chosen because it has been shown to perform well for the 

classification of AD15 17.  Classifiers learn to differentiate two classes by training on labelled 

data. In this case, features extracted from the brain images of AD and HC subjects were used 

to train the model. 

Data representation 

Working with brain data, one of the first obstacles is to decide which brain atlas to use. Since 

there exist no guidelines, it has become increasingly difficult to choose among the ever-

growing number of available atlases. This has led to the fact, that similar problems have been 

investigated with a variety of anatomical representations. For example in the case of 

the Automatic Anatomic Labeling 

atlas, the LONI Probabilistic Brain Atlas, or multi-atlas approaches 18 20. Disadvantageously, 

there is no agreement on the impact which the selected brain atlas has on the performance 

of the classifier. Machine learning approaches are highly influenced by the choice of the atlas 

since the atlas-based parcels constitute the features used by the algorithm. In fact, each atlas 

divides the brain into different numbers of regions, with varying borders and sizes. When 

comparing classification performance of different models, much emphasis is usually put on 

the implemented algorithm. Rarely, the effect of the chosen brain atlas is acknowledged.  To 



enlighten this effect, we investigated the influence of the chosen data representation on the 

Although this has been studied before (Long et al., 2018 

and Ota et al., 2014), this study is, to our knowledge, the first to use such a large cohort and 

investigate the influence on different magnetic field strengths separately15,21. 

Predictive regions 

Furthermore, we wanted to investigate if the predictors of an SVM based classifier would also 

be biologically relevant for AD. Identification of disease relevant regions is crucial for 

implementation for diagnosis in clinical routine. Since regions affected in AD are well known, 

the selected features of the classifier in this study can easily be verified. We therefore hoped 

to confirm the suitability of implementing SVM classifiers for disease pattern identification in 

clinical approaches. 

Feature selection 

In neuroimaging studies, one is usually confronted with an enormous amount of features. 

Especially in voxel-based approaches, the number of features (corresponding to the voxels of 

each image) vastly exceeds the number of samples (image of each subject). Although an atlas-

based approach was used in this study, which reduces the amount of features to a maximum 

of 1273 regions, the dimensionality of the features is still tremendous. Since an excess of 

features will increase computational cost, and even worse, can impair the classifiers 

performance, most studies perform feature selection. Feature selection describes the process 

of selecting a subset of features, which are most relevant to build the given model22. The 

assumption behind this approach is that the data contains features which are irrelevant for 

the given task or redundant in relation to other (relevant) correlated features. In our case, 

each feature contains information about the brain, but not every region is relevant for 

. A further advantage of feature selection is, that it improves 

interpretability of the model. By investigating the selected features of a model, it is possible 

to get a comprehensive insight into the basis on which the classification is done. This is 

especially important if the goal is to apply the model to clinical settings. To ensure that the 

classifier will accurately differentiate patients from healthy subjects in the future, it has to be 

ensured, that the decision of the algorithm is based on universally applicable features. In this 



case, we anticipated to be able to trace back the selected regions to brain areas known to be 

affected in AD.  

Value of non-selected features 

To achieve the best performance, it is often not useful to select the most relevant features, as 

they may contain redundant information23. Rather, a subset of features with complementary 

informative value will result in the highest accuracy. By applying feature selection, non-

relevant and redundant features are excluded to improve performance. Only a subset of all 

available features are selected for classification. While many studies have investigated the 

features selected by such an approach, few have considered the value of features which are 

not selected. Especially in a medical context, those features may still provide insight into the 

mechanisms of the disease. Therefore, during this study, we wanted to investigate if non-

selected features still contained relevant information. For this purpose, a model was built 

which contained only features that were removed by feature selection in the original model. 

Since feature selection can also remove correlated features that are redundant, also features 

which were correlated to the selected features were excluded. Thereby it was ensured that 

the performance of the non-selected feature model would be solely based on features 

unutilized by the original model. Subsequently, the model was evaluated on its ability to 

classify AD patients vs HC.  Additionally, we wanted to see whether the non-selected feature 

model would outperform the original features in classification of MCI patients. We 

hypothesized, that specific regions could play an important role in earlier stages of the disease, 

but be less important in comparison to highly atrophied regions in later stages.  

 

 

 

 

 

 

 

 



Methods 

 

Subjects 

For the analysis, structural T1-weighted images of 449 subjects (149 Alzheimer Patients and 

300 healthy controls) where taken from the  

(Table 1).  Exclusion criteria were neurological diseases other than AD, history of head trauma 

with following neurological impairment or abnormal brain structure. Diagnosis of AD was 

based on Mini-Mental State Examination (score between 20-26), Clinical Dementia Rating (0.5 

or 1) and NINCDS/ARDRA criteria24 . Since the main interest of this study was the early 

used. To ensure high signal to noise ratio, only 3 Tesla images were included. 

Since not all hospitals work with MRI scanners with identical magnetic field strength, we also 

wanted to investigate if images with different magnetic field strengths would be influenced 

differently by the atlases. Therefore, a second group was formed, which contained only 1.5 

Tesla images.  Images of 372 participants (166 Alzheimer patients and 206 controls) were 

taken from ADNI and used for comparison (Table 1).  

Additionally, structural T1-weighted images of 413 MCI subjects (138 early MCI patients, 137 

late MCI patients and 138 MCI-Converters) where taken from ADNI (Table 2). Only 3T images 

were included. Diagnosis of mild cognitive impairment was based on subjective memory 

complaints, Mini-Mental State Examination (score between 24-30), Clinical Dementia Rating 

(at least 0.5) and sufficiently preserved cognition, such that a diagnosis of AD cannot be made 

at the day of screening. Early MCI subjects and late MCI subjects were subdivided based on 

their score on the Logical Memory II subscale of the Wechsler Memory Scale. Ranges were 

adjusted according to years of education and early MCI patients had to score higher than late 

MCI patients. Only subjects who transitioned from MCI to AD were labelled as MCI-Converters. 

This included both, subjects originally assigned to early MCI and subjects originally assigned 

to late MCI. Out of the Non-Converter groups in this study, neither early MCI, nor late MCI 

subjects included patients who converted to AD up to this day.  

 



Table 1 

 Subject group characteristics of AD patients and healthy controls 

             

  3T images    1.5T images   

    Controls AD   Controls AD 

Number  306 153  206 166 

Male/Female  154/229 88/65  107/99 88/78 

Age (years)  75.2 ± 5 73.6 ± 4.7  75.3 ± 4.6 77.3 ± 6.3 

CDR (Score)  0 1   0 1 

MMSE (Score)  28.8 ± 2.6 22.3 ± 6.5  29.1 ± 1 22.8 ± 5.3 

Education (years) 15.7 ± 2.7 16.4 ± 2.6   16.2 ± 2.8 13.6 ± 3.1 

Mean ± Standard Deviation. AD   Clinical Dementia Rating, MMSE 

 Mini Mental State Examination 

 

Table 2 

 Subject group characteristics of MCI patients 

   

  eMCI lMCI Converter 

Number 138 137 138 

Male/Female 75/63 83/54 78/60 

Age (years) 72.7 ± 9.2 77.8 ± 4.6 74.8 ± 6.8 

CDR (Score) 0.5  0.5  0.5 

MMSE (Score) 28.1 ± 2.8 26.5 ± 4.9 27.4 ± 1.8 

Education (years) 15.8 ± 2.7 15.9 ± 3.0 15.9 ± 2.6 

Mean ± Standard Deviation. eMCI  early Mild Cognitive Impairment, lMCI  late Mild 

Cognitive Impairment, CDR  Clinical Dementia Rating, MMSE  Mini Mental State 

Examination 

 

Schaefer atlas 

The brain representation used in this study is the Schaefer parcellation of the human cerebral 

cortex25. Cortical parcels were estimated based on resting state fMRI from 1489 subjects. 

While previous publications relied on either global similarity or local gradient methods, 

Schaefer et al. (2018) combined both approaches25. A gradient-weighted Markov Random 

Field was applied, with three competing terms. The first term, representing the global 

similarity approach, assigns regions with similar fMRI time courses to the same label. The 

second term, which corresponds to the local gradient approach, encourages adjacent parcels 

with high gradients between them to have different labels. The third term constrains brain 

areas constituting a parcel to be close to the centre of that parcel, to account for long range 

resting-state functional connectivity. The Schaefer parcellation was chosen, because it is 



available in different resolutions, ranging from 100 to 1200 parcels (for example see figure 1). 

This allowed us to investigate the influence of varying regions, with different sizes and borders. 

In previous studies, multiple atlases were used to study this effect15,21.  This comes with the 

drawback that one has to assume that the results are not further influenced by the different 

methods used to build the atlases. Using only the Schafer atlas allowed us to eliminate this 

bias and directly compare the effect of granularity. Finally, the atlas is based on a large cohort 

and was shown to be homogeneous across different acquisition protocols. 

In this study, the Schaefer atlas was complemented by subcortical structures from the 

Brainnetome atlas26 and the cerebellum from the publication of Buckner et al. (2011)27. 

 

Figure 1. Visualization of the 400 parcel parcellation in fslr32k space, colored to match Yeo 17 

network parcellation28. (Retrieved November 10th, 2019, from 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Sc

haefer2018_LocalGlobal) 

Linear support vector classification 

For this study, Support Vector Machine (SVM) was chosen to classify 

healthy controls. SVM describes a class of linear and non-linear supervised learning models, 

which can be used for classification and regression. In this study, SVM with a linear kernel was 

used. The ultimate goal of SVM is the separation of different classes by a hyperplane, which 

results in the least misclassifications. To achieve this, SVM finds the separating hyperplane 

with maximal distance to the closest data points (Figure 2). The distance to the closest data 

points is also called the margin of the classifier. Maximizing the margin ensures that the 







 

SVM regularization and feature selection 

Many regularization approaches exist in the field of machine learning, to control model 

complexity, avoid overfitting and create generalized models. All regularization methods 

penalize the weights of features, decreasing them to smaller values. This is done under the 

premise, that single features with large weights will dominate the prediction and prevent the 

model from generalizing. Penalizing higher weights therefore results in a simpler model, which 

ignores noise in the data set. The two standard methods used for SVM are L2-norm and L1-

norm regularization. Both approaches are similar but differ in their penalty terms. While L2-

norm regularization can reduce feature weights asymptotically close to zero, it cannot 

eliminate them. L2-norm performs well when all features play a role in the prediction of the 

label31. On the contrary, L1-norm regularization is able to reduce irrelevant features to zero, 

removing them altogether31. This is also referred to as embedded feature selection, because 

it capitalizes on the weights assigned by the SVM itself.  L1-norm works particularly well for 

data sets with an excess of unimportant features. For the comparison of different atlases, L2-

norm regularization was used, because the main interest was to see how different amounts 

and sizes of parcels would influence the prediction. Therefore we wanted to use a 

regularization method which would consider all features. For further analysis, L1-norm 

regularization was applied, because it was assumed that not all features (brain regions), would 

Additionally this facilitated interpretation of the 

features and allowed us to investigate selected and non-selected features.  

Regularization parameter C 

To adjust the strictness of the regularization, one can tune the capacity parameter C. As 

discussed before, setting the regularization parameters for a model is subject to the Bias-

variance trade-off.  In our case, the SVM strives to maximize the margin between two classes 

and avoid any misclassification. However, these two objectives can be contrary. If the given 

training set contains outliers, SVM will determine a small margin, to avoid any misclassification. 

Although this will work well for the training data, the resulting model will likely have a high 

misclassification error for new data, due to the small margin of the SVM.  Therefore, Cortes et 

al. (1995) proposed the idea of a Soft Margin Hyperplane29. The regularization parameter C 

can be used to loosen the misclassification constraints and allow some misclassification, to 





simple approach, which successively tests predefined values for the hyperparameter to be 

optimized32. This method is also known as exhaustive search, because it tests all possible 

solutions of a predefined subset, for a given problem. Although simple, grid search comes with 

a major disadvantage: It quickly becomes computationally expensive with increasing numbers 

of hyperparameters to optimize. For a number of potential values n, grid search has to solve 

n optimization problems per hyperparameter. Assuming a fixed n = 10, this means that while 

tuning one hyperparameter would result in 101 = 10 evaluations, optimizing 4 parameters 

would multiply to 104 = 10,000. This phenomenon is also known as curse of dimensionality, 

but is avoided in this case, since grid search was only used to find the best possible value for 

one parameter. 

In this study, the values to be tested were defined as 10 evenly spaced values on a logarithmic 

scale between 10-4 and 104, in order to cover different magnitudes of positive, as well as 

negative numbers. The resulting models were then evaluated in a cross validated fashion, 

where the C-value of the best performing model was passed on to the outer loop, as described 

in the next subchapter.  

Model validation 

Validation of the model was based on its ability to generalize. Accuracy, sensitivity and 

specificity of each model were evaluated on a test set. To estimate the classifiers performance 

on unseen data, a k-fold cross validation (CV) approach was used. During cross validation, the 

complete dataset is split into k equally sized subsets. One of the subsets is kept as the 

validation data, while the remaining k-1 subsets are used for training of the logistic regression 

model. In successive steps, each subset becomes the validation data once. The advantage of 

CV is that instead of getting a single evaluation, like when the data is split into one large 

training and a smaller test-set, one is left with a range of accuracy scores. Therefore, CV is a 

more reliable estimate of performance. Since the sample was unbalanced, stratified random 

sampling was used to ensure that both classes are represented proportionally in all folds. 

When tuning parameters of a model by with CV, one runs into the problem of data leakage, 

since the test set used for validation is also used to select the value of the parameter in other 

runs. It is therefore very likely to overestimate the performance of the resulting model. In 

order to avoid this, nested cross validation was implemented. In the inner cross validation 



loop, the hyper-parameter C was tested for different values, and the best model was selected. 

In the outer loop, this model was then evaluated on new randomly created folds. 

Balanced accuracy 

Datasets in which the two classes are not represented equally are referred to as imbalanced. 

As in our case, control subjects vastly exceeded the number of AD patients. Therefore, the 

classifier will often times be very good at predicting the well represented class, in our case 

healthy controls, but lack accuracy on the underrepresented one. For the conventional 

accuracy, the sum of correctly predicted samples of both classes is divided by the total amount 

of subjects. As the model is likely to predict well on the overrepresented class, the 

conventional accuracy is biased to give overly optimistic estimations in the case of imbalanced 

datasets. In order to account for this, the balanced accuracy was calculated. The balanced 

accuracy can be seen as the average accuracy for each class. This means that true positive rate 

and true negative rate are calculated individually. Subsequently, they are added and averaged. 

Lower performance on either class will therefore worsen the resulting accuracy, while equally 

good performance will resolve to the conventional accuracy33. Thereby, one gets a more 

realistic estimate of the models performance. 

Permutation scores 

To generalize well on new data, it is crucial for a model to detect underlying patterns of the 

different classes during training. Although the model may predict with good accuracy, it is 

necessary to validate significance of the obtained results. Therefore, permutation scores were 

calculated in this study. In order to test if a classification score is significant, classification is 

repeated on the same dataset, but with  randomly permuted labels34. The null hypothesis is 

that features and target variable are independent, and the classifier therefore has not found 

a significant pattern. The p-value is calculated by the amount of runs which achieved a higher 

score than the original classification score obtained. If the model has found a significant 

pattern, accuracies on the permuted labels will be lower, because dependency of features and 

labels are disrupted. Therefore, the resulting p-value will be highly significant. In this study, 

permutation scores were calculated in a 10 times 10-fold CV fashion. 



Statistical comparison of classifiers over the same dataset 

To be able to compare the obtained accuracies of different classifiers, the appropriate 

statistical test has to be chosen. A paired t-test cannot be applied, since the independence 

assumption is violated in this case: During cross validation, the same dataset is subsampled to 

create the various training and test sets, with different sets overlapping with each other. 

Therefore, a corrected resampled t-test according to Nadeau and Bengio35 was implemented 

in this study. By taking the dependency of the different training sets into account, the statistic 

prevents from underestimating the variance. Thereby, false positive findings are highly 

reduced. 

Evaluating the influence of data representation 

Since the primary goal of this study was the evaluation of the influence of data representation, 

SVM classifiers were trained on different parcellations of the Schaefer atlas. The different 

atlases were applied to the same pre-processed images of each subject group. Subsequently, 

one classifier was trained on the features provided by each atlas. Every parcel of each atlas 

became a feature of the resulting model. Correspondingly, the amount of features ranged 

from 173 to 1273. This was done once for the 3T sample and once for the 1.5T sample. Models 

were trained and tested on images with the same magnetic field strength. For this part, L2-

norm regularization was chosen to ensure that the different amounts of features would also 

affect the classification. Otherwise, feature selection could have diminished the effect caused 

by the different data representations. 

Predictive features 

To evaluate if SVM can accurately detect disease relevant regions, the regions which were 

 were analysed. 

Based on the results of the comparison between the parcellations, the best performing atlas 

was chosen for further analysis. To facilitate interpretation, feature selection was enforced by 

implementing L1-norm regularization. The classifier was trained on the exact same data set as 

before. Subsequently, the weights of the coefficients of the classifier were calculated to detect 

the regions with the greatest importance for the classification.   





Denoising 

The first step of processing magnetic resonance images is to eliminate random noise 

introduced by the acquisition process. CAT12 handles this by implementing a spatial-adaptive 

non-local means (SANLM) filter, which estimates local noise and accordingly adjusts the 

denoising strength of the filter38. This has the advantage of removing noise, without also 

removing high frequency signal components. Another obstacle is presented by the bias field 

signal, which is a smooth, low frequency signal, caused by magnetic field inhomogeneities 

within the MRI. These inhomogeneities can result in different intensity values for the same 

tissue in different parts of the image and therefore impair accurate segmentation. To correct 

for the bias field signal, a parametric bias correction model is used, which models the different 

tissue intensities as a mixture of Gaussians39. The low frequency portion of the signal is cut off 

which removes the bias field signal. This is part of SPMs segmentation module, which 

optimizes signal correction and image segmentation simultaneously. 

Spatial normalization and segmentation 

In order to correctly identify different tissues in the individual brain scans, SPM implements 

tissue probability maps (TPM). TPMs are derived from a large set of subjects which are 

registered to a common space. Since different tissue types are similarly distributed across 

brains, TPMs represent the probability for a given voxel to belong to a certain type of tissue. 

This has the advantage that one is not solely reliant on voxel intensities, which can be affected 

by the partial volume effect if a voxel contains more than one type of tissue. SPM uses tissue 

probability maps for gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), skull and 

soft tissue. 

To be able to compare identical regions across subjects, all scans need to be brought into the 

same anatomical space. SPM incorporates spatial normalization and tissue segmentation into 

the same model: The images are registered to the tissue probability maps and thereby brought 

into a common space. These maps then represent the prior probability for each class of tissue 

to be found at a certain region. For segmentation, this information is then combined with the 

posterior probability, derived from the intensity values of each voxel40. 



CAT-specific preprocessing 

CAT12 builds upon this segmentation and further improves it by implementing Local Adaptive 

Segmentation (LAS), Adaptive Maximum A Posterior estimation (AMAP) and Partial Volume 

Estimation (PVE). LAS is used to correct for GM-inhomogeneities introduced by varying iron-

content or myelinization. While this would typically lead to underestimations of GM at higher 

intensities caused by high iron content, LAS prevents this by adapting to local intensity 

differences. In contrast to SPMs segmentation process, AMAP uses the tissue probability maps 

only for spatial normalization, skull stripping and primary segmentation estimate. Afterwards, 

AMAP performs segmentation without (further) prior information, by estimating intensity 

distributions and noise variances based on the local signal intensity41. Since basic AMAP does 

not account for the partial volume effect, CAT complements it by partial volume estimation. 

Introducing two additional tissue types, GM-WM and GM-CSF, PVE estimates the fraction of 

different tissue types present in any voxel42. This allows for a more accurate segmentation, 

than tissue classification based on solely the dominant tissue type in a voxel. 

DARTEL and Geodesic Shooting 

For image registration, DARTEL was used

. DARTEL is a large deformation framework 

which, in contrast to small deformation models, can conserve the topology of the images43. 

The algorithm generates diffeomorphic deformations, which means that the deformations are 

one-to-one mappings with invertible derivatives. By having invertible derivatives, 

diffeomorphisms are able to store the relative tissue volume of the brains, reflected in their 

Jacobian determinants. Thereby, individual differences before and after warping can be 

preserved. In practice, this means that if a region is stretched during the registration process, 

the initial signal intensity will be decreased accordingly and vice versa. To make this process 

more efficient, CAT can implement the Geodesic Shooting approach (GS) 44. Instead of being 

reliant on memorizing the entire sequence of velocity fields, GS determines only the initial 

velocity field and computes deformations on that basis. Therefore, need for disk space is 

strongly decreased. Additionally, Gauss-Newton optimization is implemented to decrease the 

number of iterations needed to achieve convergence. GM and WM segments are warped to 

the DARTEL/Shooting-template in iterative fashion until the registration accuracy cannot be 

further improved. 



Results  

Permutation scores 

By calculating the permutation scores, all obtained classification scores could be verified as 

highly significant.  Figure 6 shows an example for the calculated permutation scores. Depicted 

are the scores for the 173 parcel model trained on 3T images of AD vs HC. Since none of the 

accuracies achieved on permuted labels is close to the obtained accuracy of 91%, the model 

is deemed highly significant with a p-value of 0.009.  

 

Figure 6. Permutation Scores obtained for the 173 parcel model on 3T images of AD subjects 

and healthy controls. The black dotted line indicates chance level. The green dotted line 

indicates the accuracy achieved during the actual classification. The blue bars indicate the 

amount of runs during which a certain accuracy was observed with permuted labels. Note that 

none of the bars is close to the achieved accuracy. 

Performance of the parcellation-based models 

The models were based on nine different brain parcellations. Classification scores, sensitivity 

and specificity of each model were calculated and are shown in Table 3. For comparison of the 

models, differences between obtained accuracies over 10 times 10-fold CV were tested for 

significance.   Figure 1 shows boxplots for the accuracies achieved by the models which were 



trained and tested on 3T images. Although the three models based on the roughest 

parcellations achieved the highest accuracy, none of the differences between any two models 

survived p-value correction according to Nadeau. This indicates that classification accuracy of 

the models did not differ strongly. The best performance was achieved by the 173 parcel 

model with 91% accuracy, 89% sensitivity and 90% specificity. Lowest accuracy was obtained 

by the 873 parcel model with 90% accuracy, 88% sensitivity and 92% specificity.  All nine 

models had high sensitivity and specificity and were able to accurately differentiate AD and 

HC. 

On basis of the 1.5 T images, the 173 parcel model performed best as well, achieving an 

accuracy of 87%, with 84% sensitivity and 90% specificity (table 4). In contrast to the 3T image 

based models, all models, except for the 473 parcel model, show significantly lower accuracies 

than the 173 parcel based model. Additionally, the 473 parcel model shows significantly higher 

accuracies than the 673 parcel model (p-value: 0.04). Apart from that, none of the differences 

between models achieved significance. In comparison, the sample consisting of only 3T images 

resulted in superior model performance. Sensitivity as well as specificity are reduced dropping 

down to 80% and 85%, respectively. Even the worst performing model based on the 3T images 

(873 parcel model), exceeded the best model out of the 1.5T trained models by 3 percent 

accuracy.  

Table 3 

Differentiation rates for SVM- thy controls 

on 3 Tesla images 

Parcellation Accuracy (%) Sensitivity (%) Specificity (%) 

173 91.1 88.9 93.3 

473 91.1 92.4 89.7 

673 90.9 92.4 89.3 

773 90.0 90.1 89.9 

873 89.8 88.0 91.6 

973 90.5 91.0 90.0 

1073 90.6 91.3 89.9 

1173 90.8 93.4 88.2 

1273 90.5 92.4 88.6 

Parcellation  indicates the amount of parcels (features) of the atlas which was used to build 

the classifier  



 

Figure 1 Boxplots of the accuracies achieved by the different parcellation-based models on 3T 

images  

Table 4 

Differentiation rates for SVM- trols 

on 1.5 Tesla images 

Parcellation Accuracy (%) Sensitivity (%) Specificity (%) 

173 86.5 83.6 89.5 

473 84.6 82.2 87.0 

673 82.9 80.6 85.2 

773 83.2 80.3 86.2 

873 83.0 80.6 85.4 

973 83.2 81.4 85.0 

1073 82.9 80.9 84.9 

1173 83.0 80.3 85.7 

1273 82.5 80.1 84.9 

Parcellation  indicates the amount of parcels (features) of the atlas which was used to build 

the classifier 

 

 



 

Figure 1 Boxplots of the accuracies achieved by the different parcellation-based models on 

1.5T images  

Predictive regions 

Since the 173 parcel model based on 3T images performed best, it was chosen for further 

analysis. L1-norm regularization was used to execute feature selection and the model was 

trained on the 3T sample. The regions which were used for classification by the model are 

listed according to their importance for the separation of AD and HC and are shown in Table 

5. Out of 173 regions, 36 were selected for the differentiation by the L1-norm regularization. 

The two regions with the highest weights are subcortical regions, more precise parts of 

Hippocampus and Amygdala.  

Table 5 

Coordinates of regions used for SVM classification of AD vs HC 

Region Lat x y z 
SVM 

Weight 

Hipp_L_2_2 L -28 -30 -10 -0.33 

Amyg_R_2_1 R 28 -3 -20 -0.24 

VisCent_ExStr_3 L -25 -88 20 0.18 



LimbicA_TempPole_2 L -57 -33 -21 -0.16 

SalVentAttnA_ParMed_1 L -11 -34 45 -0.13 

Amyg_L_2_1 L -19 -2 -20 -0.10 

SomMotB_Aud_1 L -53 -23 8 0.09 

Cerebellum_Network_15     0.09 

SomMotA_4 R 6 -26 70 0.08 

DorsAttnA_SPL_1 R 27 -67 51 -0.08 

DefaultB_Temp_2 L -58 -32 -1 -0.08 

Tha_L_8_7 L -12 -22 13 0.08 

SomMotB_S2_2 R 57 -4 11 0.08 

SalVentAttnA_ParOper_1 L -59 -38 29 -0.08 

SomMotA_1 L -39 -23 59 0.07 

Amyg_L_2_2 L -27 -4 -20 -0.07 

ContB_Temp_1 R 62 -23 -19 -0.06 

Amyg_R_2_2 R 28 -3 -20 -0.06 

VisCent_ExStr_3 L -25 -88 20 -0.06 

DefaultB_PFCv_2 R 51 28 0 0.05 

SalVentAttnB_PFCl_1 R 32 46 29 -0.05 

VisPeri_ExStrSup_1 R 13 -86 29 0.04 

Tha_R_8_1 R 7 -11 6 0.04 

VisCent_ExStr_2 R 22 -96 -5 -0.04 

SalVentAttnA_FrMed_1 L -6 4 62 0.03 

SalVentAttnB_PFCl_1 L -30 44 30 -0.03 

Cerebellum_Network_8     0.03 

Cerebellum_Network_8     0.02 

TempPar_2 R 57 -26 -2 -0.02 

SomMotA_1 R 47 -11 48 0.01 

DefaultB_Temp_1 L -55 -4 -20 -0.01 

Cerebellum_Network_4     0.01 

VisPeri_ExStrInf_1 L -17 -60 -7 0.01 

VisCent_ExStr_3 R 36 -82 16 -0.01 

DefaultA_IPL_1 R 55 -51 31 -0.01 

SalVentAttnA_Ins_1 L -41 -1 -7 0.01 

 

Coordinates are in MNI space (L left, R right). The absolute value of the weight (arbitrary units) 

indicates the importance of the corresponding region for separation between AD and control 

subjects relative to other regions. Cerebellum networks encompass both hemispheres and are 

therefore not denoted with coordinates. Abbreviations: Hipp  Hippocampus, Amyg  

Amygdala, Tha Thalamuas, VisCent  Visual A, LimbicA  Limbic A, SalVentAttnA  Salience 

Ventral Attention A, SalVentAttnB  Salience Ventral Attention B, SomMotA  Somatomotor 

A, SomMotB  Somatomotor B, DorsAttnA  Dorsal Attention A, DefaultB  Default B, ContB  

Control B, VisPeri  Visual B, TempPar  Tempo parietal 



Evaluation of non-selected features 

Dividing the features as described in the methods resulted in 26 selected features and 147 

non-selected features. The 26 selected features were used to build the selected feature model 

(SFM).  Out of 147 non-selected features, 73 were uncorrelated to all of the 26 selected 

features and used to build the non-selected feature model (NFM). The SFM showed the best 

performance with 92% accuracy, 89% sensitivity and 96% specificity (Table 6). The original 

model (OM) performed comparably with an accuracy of 91%, sensitivity of 87% and specificity 

of 95%. The non-selected feature model (NFM) classifies AD vs HC with an accuracy of 76.4 %, 

sensitivity of 63% and specificity of 89%. The NFM dropped 15% in accuracy, compared to the 

OM and the SFM. It is obvious that this is especially caused by a drop in sensitivity, while 

specificity remains relatively stable. Implementation of the L1-regularization did not improve 

accuracy in comparison to L2-regularization used during the first analysis. On the other hand, 

further restriction to the 26 most selected features could increase accuracy about 1%.  

Table 6 

Differentiation rates for SVM-

controls 

AD vs HC       

Model Accuracy (%) Sensitivity (%) Specificity (%) 

Original  91.0 86.9 95.2 

Selected 92.1 88.6 95.6 

Non-selected 76.4 63.4 88.9 

 Original  complete parcellation with all 173 parcels, Selected  model including the 26 most 

selected features, Non-Selected  model including the 73 features which were rarely used and 

uncorrelated to the 26 most selected features 

Classification of MCI-converter vs non-converter 

Classification of MCI-Converters vs subjects with early mild cognitive impairment was most 

accurate using the original model with all 173 features, which achieved an accuracy of 69% 

(table 7). SFM and NFM achieved 67% and 66% accuracy, respectively. All three models 

showed high specificity with 88% on average, indicating that they could reliably detect early 

MCI non-converters. On the other hand, they lacked sensitivity and were only able to correctly 

identify 47% of the converter subjects, on average.  

Out of the three models, none were able to reliably classify MCI-Converters vs subjects with 

late mild cognitive impairment (table 8). The highest accuracy of 58% was again achieved by 



the original model, but was far inferior in comparison to classification of eMCI vs MCI-

Converter. Finally, all models had relatively high specificity, 75% on average, but low sensitivity 

with only 37% on average. 

Table 7 

Differentiation rates for SVM-Classification of converter vs early mild cognitive impairment 

    

eMCI vs Converter       

 Model Accuracy (%) Sensitivity (%) Specificity (%) 

Original  69.0 48.9 89.1 

Selected 67.2 48.2 86.2 

Non-Selected  66.1 43.1 89.1 

Original  complete parcellation with all 173 parcels, Selected  model including the 26 most 

selected features, Non-Selected  model including the 73 features which were rarely used and 

uncorrelated to the 26 most selected features 

 

Table 8 

Differentiation rates for SVM-Classification of converter vs late mild cognitive impairment 

    

lMCI vs Converter       

 Model Accuracy (%) Sensitivity (%) Specificity (%) 

Original 57.8 40.9 74.6 

Selected  55.9 38.0 73.9 

Non-Selected  54.8 33.6 76.1 

Original  complete parcellation with all 173 parcels, Selected  model including the 26 most 

selected features, Non-Selected  model including the 73 features which were rarely used and 

uncorrelated to the 26 most selected features 

 

 

 

 

 

 

 

 



Discussion  

 

Performance of the parcellation-based models 

The present study compared the influence of different types of data representations on the 

classification performance for  

Representatively, SVM classifiers derived from different granularities of the Schaefer atlas 

were evaluated on their classification accuracy. It is clearly evident, that the granularity of the 

atlas influences the performance of the resulting model (table 3 and 4). This can be traced 

back to the smoothing properties of the atlas. When applying an atlas to a given brain image, 

each parcel will be the average of the underlying voxels of that area. This effect is much 

stronger than spatial smoothing itself. The usual FWHM (Full Width at Half Maximum) used 

for smoothing is two times the voxel dimension. Voxels in our study were 1 x 1 x 1 mm, which 

would result in a FWHM of 2mm. This is on a much smaller scale than the size of a parcel, 

which can encompass hundreds of voxels. This is also supported by the fact, that smoothing 

after pre-processing and before applying the atlas had almost no effect on the obtained 

accuracies (Appendix A and B). Apart from effect size, most of the assumptions made for 

spatial smoothing are also true for the application of atlases with different granularities. 

Several studies have shown the varying effect of smoothing with different kernel sizes45 47. 

The same holds true in this case. Starting from the 173 parcellation, the smoothing effect 

decreases as the individual parcels became smaller with increasing granularity of the atlases. 

Therefore, the models, tested on images derived from atlases with different smoothing 

properties, also perform differently. For the classification of AD vs HC, the best performing 

models were based on the lowest granularity atlases, hence the cases in which the largest 

smoothing was done. This can be explained by the matched filter theorem, which states that 

sensitivity for a given effect is highest if the filter matches the extent of that effect48,49. 

Thereby, a matched filter will maximise the signal-to-noise ratio (SNR) in presence of noise. In 

this study, the observed effect 

difference in brain volume between patients and healthy controls. Brain volume loss during 

AD is strongly increased, with annual atrophy rates of around 3-4%, in comparison to 0.5% in 

normal aging50 53. Between patients and controls, highly affected regions like the hippocampal 

formation show differences in the order of 1-2 cm3  54,55. From this it becomes evident, that 



such a pronounced effect is best matched by a filter with high spatial extent. The effect can 

also be looked at from the brain region perspective. The hippocampus for example is known 

to be highly atrophied in AD patients. Although atrophy in this region is highly predictive for 

AD, we do not gain any additional information by splitting it into a huge number of parcels. 

Rather, we create an excess of features, which (at best) include redundant information. 

Therefore, model complexity, and more so variance, is increased and the model will naturally 

perform worse on unseen data. 

Classification accuracy between the two field strengths is considerably different. Performance 

on the 3T images vastly exceeded that for 1.5T images. This may be due to the fact, that a 

higher magnetic field strength (MFS) increases the SNR56 59. In previous studies, an 

approximate two-fold increase in SNR could be shown from 1.5T to 3T57. Therefore, different 

MFS result in different estimations of regional volume60. Additionally, Chow et al. (2015) found 

that a higher magnetic field strength resulted in improved detection of hippocampal atrophy 

patterns in AD55. In a study by Samper-González et al. (2018) it was also found, that a higher 

magnetic field strength is connected with increased classification accuracy for AD vs HC61. 

These observations point to the conclusion, that the increase in accuracy is the result of better 

atrophy detection, due to increased SNR (induced by higher MFS). In conflict with that, several 

studies report that the effect of magnetic field strength is small compared to the effect size of 

the disease62 64. Nevertheless, all studies acknowledge that there is indeed a difference in 

estimation of regional volume/cortical thickness.  Another finding supports the conclusion 

that the difference in SNR could cause the decline in accuracy: For the 1.5T images, there is a 

strong decrease of accuracy with increasing granularity of the atlas. As discussed before, 

increasing granularity comes with a reduced spatial extend of smoothing. This may affect the 

1.5T images even more, because they have a low SNR to begin with. Accordingly, none of the 

models trained on 3T images showed significantly different accuracy scores. This indicates that 

additional smoothing by applying the atlas did not improve SNR to a point at which it benefits 

classification any further. 

Predictive regions 

By analysing the predictors of our classifier, we wanted to evaluate if this approach is suited 

to draw biological conclusions about the relevance of certain regions for AD. The regions 

selected for SVM classification of AD vs HC are generally 



specific patterns found by other studies51,65,66. The five most important regions of the classifier 

are discussed representatively.  

Notably, 4 of the 5 most predictive regions are located on the left hemisphere (table 5). This 

is in accordance with several studies, which report that the left hemisphere is more affected 

in dementia67,68. The region which is most useful for the classification is the caudal 

hippocampus of the left hemisphere (table 5). The hippocampus is known to be one of the 

and overall disease severity54,69 71. Although hippocampal atrophy is not specific to the disease 

as it also occurs in other dementias, like frontotemporal dementia72, vascular dementia73 and 

74, it is the most established biomarker in AD. Strikingly, only the caudal 

part of the hippocampus was used by the classifier. As discussed earlier, the implemented L1 

norm regularization tends to select only one of several highly correlated predictors. In this 

case, the caudal hippocampus of the right hemisphere and the rostral hippocampus of both 

hemispheres were disregarded, although they are known to be affected in AD74,75. In Appendix 

C it can be seen, that using L2-norm regularization, all parts of the hippocampus are assigned 

with similar high weights. Note that the caudal hippocampus of the left hemisphere is assigned 

with the highest weight and also selected for classification by the L1-norm regularization, 

subsequently. The region may be especially predictive, because this part of the hippocampus 

includes the cornus ammonis (CA) 1-4. It is well known that neuronal loss begins in CA1 initially 

and, following the Braak stages76, progressively affects CA2  CA4 . Atrophy in these parts of 

the hippocampus is therefore highly predictive 51,75,77.  

The medial amygdala of the right hemisphere is ranked second by our classifier. Especially in 

the earlier stages of AD, the Amygdala was shown to be highly atrophied51,78,79. Reduction in 

amygdala volume in AD patients compared to healthy controls is estimated to be between 15-

25 % 80 82. Both, the medial amygdala, as well as the lateral parts have been reported to be 

affected82,83. 

The third most predictive region lies in the extrastriatal region of the visual cortex, in the left 

hemisphere. Interestingly, several studies have suggested that a subgroup of AD patients, who 

have visual complaints, suffer from pronounced involvement of the visual association areas84

86. Those patients typically show impairment in higher visuoperceptual processing abilities, 

including visual attention, perceiving structure from motion and face perception87. The 



predominant disturbance of visual abilities is considered by many as its own syndrome, 

posterior cortical atrophy (PCA), distinct to AD with visual deficits88 90. Nevertheless, 

researchers agree that the underlying neurodegeneration causing PCA is attributable to AD in 

the majority of cases90,91. It is therefore likely, that the first two regions selected by the 

classifier are particularly involved in the differentiation between typical AD and controls, while 

the extrastriatal region of the visual cortex is especially helpful for detection of AD cases with 

involvement of visual areas. 

The medial temporal pole of the left hemisphere is the fourth most predictive region of the 

classifier. It was shown, that AD patients suffer from severe atrophy of the temporal pole, 

potentially disrupting neural connections to memory related limbic structures92Furthermore, 

Domoto-Reilly et al. (2012) found a high correlation of impaired performance in the Boston 

Naming Test and cortical thinning of the temporal pole in AD patients93. 

The medial parietal cortex of the left hemisphere was ranked the fifth most important region 

for classification. It encompasses parts of the posterior cingulate cortex (PCC), which is known 

to be affected early during AD94 96. A study by Seo et al. (2007) demonstrated, that the PCC is 

subject to cortical thinning in MCI patients97. Difference of cortical thickness in the PCC could 

also be shown for AD patients vs healthy subjects98. 

Evaluation of non-selected features 

Testing the non-selected feature model on the classification of AD vs HC, we observe that the 

model still achieves reasonable accuracy (table 6). Therefore, it can be concluded that the 

features used for building this model contain valuable information for the differentiation of 

both classes. Nevertheless, the SVM assigned them with a weight of zero during the majority 

of original cross validation runs. Conversely, this does not imply that those features, more so 

the underlying brain regions, have no relevance for the disease. It suggests that other features 

are more suitable, or equally suitable, for differentiation23. The number of selected features 

is highly influenced by the regularization parameter C. Smaller values of C will decrease the 

amount of features selected by the L1-norm regularization99.  During the hyperparameter 

optimization in our study, an optimal C value of 0.046 was determined. Consequently, our 

classifier contains rather small amounts of features, disregarding those with lower importance 

for the classification. Additionally, also the features correlated to the most predictive features 

are removed in the NFM. Therefore, it becomes evident, that a subset of completely 



disregarded features still contains relevant information for the classification of AD vs healthy 

controls. Strikingly, the NFM struggles with correctly identifying AD patients (low sensitivity) 

but performs well on healthy subjects. A possible explanation is, that the original model 

selected most disease relevant regions. Therefore, the NFM, which includes only features 

apart from those selected by the OM, is less suitable to detect AD. In this case, the three most 

predictive regions of the NFM are located on the superior temporal gyrus / anterior temporal 

pole (Appendix D). Atrophy, especially in the temporal lobe, is generally increased in AD in 

comparison to healthy aging. Interestingly, recent studies found out, that atrophy rates in this 

region are similar to those measured in healthy aging100,101. Therefore, increased atrophy in 

the superior temporal gyrus, although existent, is less sensitive for detection of AD. This 

supports the thesis that the OM indeed selected the most relevant regions. On the other hand, 

the NFM was still able to differentiate both classes, although to a lesser degree, because 

volume differences in this region provide valuable information. The selected feature model 

exceeds the performance of the OM. Although the original model already performs feature 

selection by L1-norm regularization, the SFM is further restricted to contain only features, 

which were selected in the majority of cross validation runs. Thereby, the SFM is an aggregate 

of the most predictive features. By further decreasing variance, through the reduction of the 

number of features, the SFM gains in accuracy and outperforms the OM.  

Classification of MCI-converter vs non-converter 

The NFM shows the lowest performance for the classification of AD vs HC. Still, we wanted to 

see if the NFM would outperform the OM and the SFM when predicting MCI-Converter vs 

non-converters. Potentially, one could imagine a region which is highly affected in the earlier 

highly suitable to differentiate converters and non-converters, but less useful to differentiate 

established AD and HC. Such a region would have been disregarded by the OM, but could be 

included in the NFM.  

Evaluating the performance of the three classifiers on the classification of MCI-Converter vs 

early MCI Non-Converter, it is obvious that all are able to differentiate both classes (table 7). 

The accuracies achieved are in line with those reported in several studies, using structural 

images from the ADNI database102,103. Other studies reported even higher accuracies around 

80% 104,105. Interestingly, all models have high specificity and predict well on early MCI patients 



who do not convert to AD. On the other hand, sensitivity is low in each of the models, 

indicating that classification of MCI-converters did not work as accurate. As only the baseline 

scans of each subject was included, this was an expected result. Although all subjects included 

in the converter group converted to AD until now, this is not necessarily reflected in the first 

scan. Since the MCI-Converter group included patients originally diagnosed as early, as well as 

late MCI, baseline scans of individual subjects may differ in their degree of atrophy.  Therefore, 

converters originally diagnosed with early MCI are prone to be misclassified as early MCI non-

converters. 

The NFM did not show improved accuracy in comparison to the other models. This may be 

due to the fact that around 2/3 of the atrophy patterns typical for MCI are shared with those 

of AD106

they are expected to accurately predict on MCI patients. On the other hand, performance of 

the NFM did not differ strongly. This suggests that it contains relevant regions to differentiate 

converters and non-converters. Interestingly, Misra et al. (2009) found that MCI converters 

showed increased atrophy in the superior temporal gyrus, among other regions, compared to 

MCI non-converters104.  As discussed before, this region is included in the NFM. Although it is 

not as distinctively for AD vs HC, it might show greater differences between converters and 

non-converters in earlier stages. This also highlights the fact, that atrophy patterns in MCI are 

not restricted to regions which are highly atrophied in AD, but can include other regions, as 

well.  

Lastly, we tried to classify MCI-Converters vs late MCI patients. In comparison to the 

classification of converters vs early MCI, we observe a strong decrease of sensitivity and 

specificity, leading to a loss in accuracy of around 11% for all models. This was unsurprising, 

since the MCI-Converter group included mostly patients originally assigned to the late MCI 

group. Thereby, the differentiation of the converter group vs the late MCI subjects is naturally 

more difficult. In general, one can assume that brains of late MCI patients are more similar to 

those of converters than those of early MCI subjects. In addition, with an annual conversion 

rate from MCI to AD of 7%, many of the late MCI subjects are anticipated to convert in the 

near future6.  



Conclusion 

In conclusion, we could demonstrate that different representations of the brain can influence 

the classification of AD vs HC. This was mainly traced back to the granularity of the chosen 

atlas. Although performance on 3T images was unaffected, different parcellations highly 

influenced accuracies obtained on 1.5T images. Since not all hospitals have access to 3T 

scanners, AD cohorts are often a combination of 1.5T and 3T images. Therefore, our findings 

indicate, that future atlas-based studies should pay more attention to the choice of the brain 

atlas. Selecting the right brain parcellation could highly increase performance of the given 

approach. Conversely, unsuited brain parcellations will impair classification abilities of the 

model. In addition, we observed that images with lower MFS generally resulted in decreased 

performance. Still, in our view, it would make no sense to exclude images with lower MFS 

from the trainings data, since this would heavily reduce the generality of the model. Although 

in an optimized setting all images would be available in the best possible resolution, clinical 

data is not on that level yet. 

Analysing the predictors of our classifier, we could demonstrate that all of the top 5 regions 

selected 

classifiers are highly suitable to draw conclusions about the importance of the selected regions 

for a given disease. 

We were able to show that non-selected features may still contain relevant information for 

the investigated disease. This was demonstrated by the example of differentiation between 

AD and HC. It also emphasizes the fact, that biologically relevant structures may not 

necessarily be included in the best performing model.  We therefore suggest that future 

studies pay more attention to non-selected features, if they aim to identify all disease relevant 

regions. 

Finally

disease patients and healthy controls can accurately differentiate MCI-Converters from early 

MCI non-converters. Although the NFM did not exceed performance of the original model, we 

could show that features not selected for classification of AD vs HC, may contain valuable 

information for the classification of converters vs early MCI. The classification of converters vs 

late MCI non-converters showed less encouraging results, with none of the models achieving 

accuracy above 58%. 



Limitations 

Our current study has several limitations: Apart from different parcel sizes and locations, 

atlases also differ methodologically. Although this was not an issue in this study, since the 

same atlas was used in different resolutions, the method to divide the brain could also 

influence performance. Additionally, atlases are derived from different cohorts. Factors like 

age-range of the used population, sample size and gender distribution determine the 

representativeness of the atlas. Therefore, in different settings, influence of the chosen atlas 

can probably not be attributed only to the granularity of an atlas. Furthermore, images 

acquired at different scanning sites differ in the applied MRI sequence. Since the MRI 

sequence determines the voxel intensities, varying sequences will result in different values for 

the same regions. This could also have affected classification. In addition, it is obvious that 

various learning algorithms deal differently with various amounts of data. Although the same 

algorithm was used in this study, it might be of interest to analyse the interplay between 

learning algorithm and atlas in the future. 

Suitability of SVM to draw biological conclusions is limited by the fact, that the L1-norm 

regularization eliminated relevant features with high correlation to others. Therefore, it is 

certain that not all relevant brain regions are reflected in the SVMs coefficients. In addition, 

one has to be careful when speaking of relevance of a certain feature. Although selected 

features are statistically relevant for the classification, this does not guarantee a causal 

relationship with the disease. It is therefore crucial, to also verify the relationship of selected 

feature and target in a biological context. 

A further limitation of our approach is, that features deemed non-selected still had a low 

correlation (<0.3) with some of the most predictive features and were indeed assigned with 

non-zero weights in a small number of CV runs (less than 20%). Therefore one could argue 

that the regions deemed non-selected in our study could potentially be selected by the 

classifier. However, given their low predictive value, they would almost certainly be excluded 

from the final model, even with a moderate regularization. Additionally, our approach is 

limited to models with good interpretability, such as the linear SVM. More complex models 

like deep learning methods aggravate the interpretation, because of increasingly complex 

interrelations between the features of each layer. 



Explanatory power of our study is limited by the fact that our MCI-converter group contained 

mostly patients initially diagnosed with late MCI. One could therefore argue, that classification 

in our case is mostly based on differentiation of early and late MCI, and not of converter vs 

non-converter.  

Outlook 

For future application we would suggest to apply elastic net regularization99. The elastic net 

regularization combines attributes of L1  and L2-norm penalty to do grouped selection. While 

the L1-norm penalty term will allow for variable selection, the L2-term penalty will ensure that 

highly correlated variables are selected together107. Such an approach will select groups of 

relevant variables together and prevent from disregarding important regions. Thereby, the 

explanatory power of the model would be highly increased. In addition, the models used to 

differentiate the MCI cohorts showed low sensitivity and were unable to accurately detect 

converters. To improve sensitivity in future studies, it might be a suitable approach to further 

divide the MCI-Converter group according to the duration until conversion to AD. Converter 

with imminent conversion to AD are more likely to show corresponding atrophy patterns in 

their baseline scans and will be easier to classify. Complementing this, future approaches 

should focus on classification of subjects who were originally assigned to the same disease 

stage. Relying solely on early MCI subjects would also have the benefit that resulting models 

could predict conversion to AD at an earlier time point. Finally, the models used to classify 

converters vs non-converters were derived from a training sample of AD patients and healthy 

controls. Although atrophy patterns in MCI are highly overlapping with those of AD, our own 

results suggest that there are in fact some regions which play a bigger role in MCI. Therefore, 

using a training set of MCI converters and non-converters could potentially increase 

performance of the model. 
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Appendix C 

Table 8. Weights assigned to different parts of the hippocampus by the 173 parcel model using 

L2-norm regularization 

Region Lat x y z 
SVM 

Weight 

Hipp_2_2 L -28 -30 -10 0.15 

Hipp_2_2 R 22 -12 20 0.08 

Hipp_2_1 L -22 -14 -19 0.07 

Hipp_2_1 R 22 -12 -20 0.05 

Coordinates are in MNI space (L left, R right). The absolute value of the weight (arbitrary units) 

indicates the importance of the corresponding region for separation between AD and control 

subjects relative to other regions. Hip_2_2 - caudal hippocampus, Hip_2_1 - rostral 

hippocampus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Appendix D 

Table 9. Coordinates of the top 5 regions used for SVM Classification of AD vs HC by the NFM 

Region Lat x y z 
SVM 

Weight 

DefaultB_Temp_1 L -55 -4 -20 -0.36 

TempPar_1 R 51 7 -18 -0.18 

TempPar_1 L -57 -50 12 -0.14 

Cerebellum_Network_4     0.09 

ventral caudate L -12 14 0 -0.08 

Coordinates are in MNI space (L left, R right). The absolute value of the weight (arbitrary units) 

indicates the importance of the corresponding region for separation between AD and control 

subjects relative to other regions. 


